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Abstract

Bejan�s constructal theory is explored for a paradigm problem in electrical theory, analogue of a wide range of

transport problems involving flow subject to a Ohm�s Law model. The equi-potential optimisation is derived and

generalised to further functional behaviour of resistances. The original case illustrates the power of Bejan�s asymptotic-

intersection method.
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1. Introduction

In Adrian Bejan�s recent book on constructal theory

[1], a theme emerges that when two differing regimes of

transport are optimised, the available potential drop

may be shared equally between the two. For example,

we have the pressure drop across regions of diffusive

flow and of turbulent flow, or the temperature drop

across regions of high and low conductivity. Indeed the

heat transfer example is how constructal theory was first

reported, in this journal [2]. This note illustrates and

generalises the essence of his result in a simple example;

the principles hold for any transport phenomenon. The

present example is worded in terms of electrical currents

and resistances which seems both a new application of

Bejan�s constructal theory as well as being entirely fa-

miliar to engineers and scientists. Electrical analogies

are, of course, a well-known source of techniques in heat

transfer. The example itself has been deliberately sim-

plified so as to illustrate a teaching point rather than

provide a solution to any specific problem. The same

arguments apply to any model where a potential drop is

proportional to a current flow, and further generalisa-

tions are given towards the end of the note. The note

finishes with an illustration taken from this model of

Bejan�s asymptotic intercept approximation.

2. The model

Consider the geometric optimisation of Fig. 1 where a

horizontal strip of high conductivity material is available

to pass a current through the system that otherwise

consists of low conductivity material. The volume of the

low resistance material is smaller than that of the high

resistance material by a ratio r say. The maximum overall

resistance will be between the opposite corner points

where the current enters and where it leaves. The prob-

lem posed is to minimise the voltage difference between

these two points necessary to drive the current, by ad-

justing the shape of the system while leaving the amount

of the two components fixed.

As Bejan says, this maximum potential is indeed for

the source corner furthest away from the sink and it will

be sufficient therefore to consider some quantum I0 in-

jected in this region. Given the assumed proportionality

of voltage drop and current, the problem is equally one

of maximising the current for a given potential drop.

The variable available is the slenderness ratio,

s ¼ Y =X ; actual amounts of the two materials are fixed

in this two-dimensional problem with a system with unit

thickness in the third dimension. The upper strip has the

volume Volupper ¼ XY and the lower some fraction of
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this such that the volume ratio is r ¼ Volbelow=Volabove.
The lower strip has a resistivity qlo smaller than that of

the upper strip qhi. For both strips the effective resistance

is between one side and an opposing corner. The strips

will have a resistance Rsq ¼ qS where S ¼ SðX ; Y Þ is a

shape factor. If X ¼ Y ¼ 1 then Ssq ¼ Sð1; 1Þ will be

approximately unity and certainly the same for both

upper and lower regions. The resistance of each strip

depends however on its orientation. For the lower strip

where the current of interest is horizontal, the resistance

falls with cross-sectional thickness A and rises with

length in the x-direction. For the upper strip, the current
of interest is vertical and similarly its resistance falls

with cross-section A and rises with length in the y-
direction. Note that the fixed amount of material means

that as X is extended, Y decreases in proportion for both

strips.

We can assume therefore that the resistance of the

strips is of the form

RloðX ; Y Þ � qloSsqX=Y and RhiðX ; Y Þ � qhiSsqY =X

ð1Þ

Since both regions are rectangular, they will have a

common shape factor and its value would not affect any

internal optimisation. For simplicity put the common

square shape scaling factor to unity Ssq ¼ 1. (If Ssq 6¼ 1,

then write an effective resistivity qeff ¼ qSsq.) These re-

sistances can be written therefore as

Rlo ¼ qlo

X
Alo

¼ qlo

X
rY

and Rhi ¼ qhi

Y
Ahi

¼ qhi

Y
X

ð2Þ

We next assume an Ohm�s Law situation such that

the current (whether of electricity, heat, fluid flow,

matter, etc.) is given by the potential drop divided by

the resistance: I0 ¼ DV =R where the current I0 is fixed.

3. Optimisation

We may now write the individual potential drops in

series passing the common current and we have to

minimise rV ¼ rVabove þrVbelow. We use the Lagrange

method [3] to optimise over X , Y writing the restraint

between these two variables explicitly in the Lagrangian

by introducing the fixed upper volume Vol ¼ XY

L ¼ DV þ k½Volabove 	 XY 
 ð3Þ

Then at an optimum

oL
oX

¼ 0 ¼ I0
qlo

rY

�
	 qhiY

X 2

�
	 kY ð4Þ

and

oL
oY

¼ 0 ¼ I0
qhi

X

h
	 qlo

rY 2

i
	 kX ð5Þ

Eliminating the Lagrange multiplier k gives

X 2

Y 2
¼ r

qhi

qlo

or X 2
opt ¼ Volabove

ffiffiffiffiffiffiffiffiffi
r
qhi

qlo

r
ð6Þ

whence

DVbelow ¼ I0

ffiffiffiffiffiffiffiffiffiffiffi
qhiqlo

r

r
¼ DVabove ð7Þ

That is, the available potential is divided equally in the

optimum arrangement where

Y
X

� �
opt

¼ qloVolabove

qhiVolbelow

� �1=2

ð8Þ

This may be interpreted as having the optimum slen-

derness ratio the reciprocal of the square root of an

effective volume ratio.

The attraction of the Lagrange multiplier route to

optimisation is not only the replacement of a con-

strained optimisation by a free optimisation but also the

interpretation of the Lagrange multiplier as a measure of

the effect of a small change of restraint on the optimum.

In this case the Lagrange multiplier is zero, showing

indirectly that there is no change of potential drop on

rescaling the geometry, at this optimum slenderness

ratio. This can also be seen from the results for DVopt of
course, given fixed current. (If the current were pro-

portional to the size, however, as in a distributed load-

ing, the potential would go up accordingly.)

4. Generalised equi-potential

The equi-partition remains true even if resistances

take the form qðX=Y Þn with n arbitrary (put ðX=Y Þn ¼
x=y). To see this, suppose that the two resistances are

given by the forms Asm þ Bs	n where s ¼ Y =X is the

slenderness ratio. This reduces to the original form when

m ¼ n ¼ 1. This may be optimised directly in terms of

the ordinary differential variable s to give

Fig. 1. Two configurations for the high and low conductivity

strips with electrical current from the source to the sink. The

available material is fixed so that XY ¼ constant.
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d

ds
Asm þ Bs	n ¼ 0 ¼ mAsm	1 	 nBs	n	1

or smþn ¼ nB
mA

ð9Þ

and the optima

rVbelow ¼ An=ðmþnÞBm=ðmþnÞ n
m

	 
m=ðmþnÞ
and

rVabove ¼ An=ðmþnÞBm=ðmþnÞ n
m

	 
n=ðmþnÞ
ð10Þ

so that these two are equal, with an equal division of

potential drop between the two components, whenever

m ¼ n. More generally the ratio is as ðm=nÞn=m.
We see therefore that for a simple case of two dis-

similar components �in series� the optimum arrangement

of given material to achieve a given purpose calls for an

equal division of the potential drops available to drive

the system. This theme is elegantly illustrated in much of

Bejan�s writing where he derives optimal shapes for

areas from this principle, extending to entire flow

structures such as tree networks.

5. Method of intersecting asymptotes

The original model also provides an instructive ex-

ample of Bejan�s intersecting-asymptotes method to

approximate an optimum design and its associated

values. In the expression for the potential drop DV ¼
DVabove þ DVbelow we have two terms, one going as the

slenderness ratio s ¼ Y =X and one as its reciprocal

s	1 ¼ X=Y . We may readily optimise this as an ordinary

differential in s to find as before

d

ds
DV ¼ d

ds
I0

qlo

rs

h
þ qhis

i
¼ 0 ¼ qhi 	

qlo

rs2
ð11Þ

so that

s2opt ¼
qloVolabove

qhiVolbelow
ð12Þ

If the two separate terms are then plotted against s as
asymptotic terms, Fig. 2, then we see that these two

asymptotes intersect at a value of the independent ar-

gument s that is indeed the optimum value and that the

true optimum value of DV is indeed twice the optimum

value of each, corresponding to equal contributions

from both asymptotic terms. This result remains true for

any common power of s as already shown.

More generally there may be further terms contrib-

uting to a result than the two extreme asymptotes but

their intersection is likely to be a fair estimate of the true

optimised independent variable and twice the intersec-

tion value a passable estimate of the optimised depen-

dent variable when the exact functional dependence is

unknown.

6. Conclusion

We have provided a model based on optimising

electrical currents that serves as analogy for a wide range

of transport phenomena. It is now readily seen how

Bejan�s constructal theory leads to an equi-potential

division between two competing regimes. Indeed a more

general result is given when the functionality is made

more general. The model has also illustrated the inter-

secting-asymptote method. In addition to providing a

didactic model, it is hoped the extension of Bejan�s
theory to electrical circuits will have intrinsic value.
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Fig. 2. The approximate fit of a dependent variable to its as-

ymptotes, showing the agreement with the intersection of as-

ymptotes and an optimum that is double the intersect.

J. Lewins / International Journal of Heat and Mass Transfer 46 (2003) 1541–1543 1543


	Bejan&rsquo;s constructal theory of equal potential distribution
	Introduction
	The model
	Optimisation
	Generalised equi-potential
	Method of intersecting asymptotes
	Conclusion
	References


